
Engineering Applications of Artificial Intelligence 100 (2021) 104182

K
c
R
a

b

c

A

K
N
C
R
S
K
C

1

f
P
d
t
m
a
2
t
i
u
d
s
t
t
G
i
f
g

(

h
R
A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

eras2c: A library for converting Keras neural networks to real-time
ompatible C
ory Conlin a,∗, Keith Erickson b, Joseph Abbate c, Egemen Kolemen a,b,∗

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton NJ 08544, USA
Princeton Plasma Physics Laboratory, Princeton NJ 08544, USA
Department of Astrophysical Sciences at Princeton University, Princeton NJ 08544, USA

R T I C L E I N F O

eywords:
eural networks
ontrol systems
eal-time
oftware
eras

A B S T R A C T

With the growth of machine learning models and neural networks in measurement and control systems
comes the need to deploy these models in a way that is compatible with existing systems. Existing options
for deploying neural networks either introduce very high latency, require expensive and time consuming
work to integrate into existing code bases, or only support a very limited subset of model types. We have
therefore developed a new method called Keras2c, which is a simple library for converting Keras/TensorFlow
neural network models into real-time compatible C code. It supports a wide range of Keras layers and
model types including multidimensional convolutions, recurrent layers, multi-input/output models, and shared
layers. Keras2c re-implements the core components of Keras/TensorFlow required for predictive forward passes
through neural networks in pure C, relying only on standard library functions considered safe for real-time
use. The core functionality consists of ∼ 1500 lines of code, making it lightweight and easy to integrate into
existing codebases. Keras2c has been successfully tested in experiments and is currently in use on the plasma
control system at the DIII-D National Fusion Facility at General Atomics in San Diego.
. Motivation

TensorFlow (Abadi et al., 2015) is one of the most popular libraries
or developing and training neural networks. It contains a high level
ython API called Keras (Chollet et al., 2015) that has gained popularity
ue to its ease of use and rich feature set. An example of using Keras
o make a simple neural net is shown in Listing 1. As the use of
achine learning and neural networks grows in the field of diagnostic

nd control systems (Hunt et al., 1992; Jin et al., 2018; Liu et al.,
017; Abiodun et al., 2018), one of the central challenges remains how
o deploy the resulting trained models in a way that can be easily
ntegrated into existing systems, particularly for real-time predictions
sing machine learning models. Given that most machine learning
evelopment traditionally takes place in Python, most deployment
chemes involve calling out to a Python process (often running on a dis-
ant network connected server) and using the existing Python libraries
o pass data through the model (Amazon SageMaker, 2020; Oracle
raphPipe, 2020; Bai et al., 2019). This introduces large latency and

s generally not feasible for real-time applications. Existing methods
or compiling Python code into C (Behnel et al., 2011; Hayen, 2020)
enerally require linking in large libraries that are neither deterministic

∗ Corresponding authors.
E-mail addresses: wconlin@princeton.edu (R. Conlin), kerickso@pppl.gov (K. Erickson), jabbate@princeton.edu (J. Abbate), ekolemen@princeton.edu

E. Kolemen).
1 All Keras2c code, documentation, and examples are available at github.com/f0uriest/keras2c.

nor thread-safe. Recently, there has been work in methods that allow
neural networks to be imported into C/C++ programs without the
use of Python such as TorchScript in Pytorch (Paszke et al., 2017)
or Frugally Deep (Hermann, 2020) for Keras. Both of these libraries
resolve some of the limitations of previous methods by not relying on
network connections, but in both cases still rely on sizeable external
libraries such as Eigen (Guennebaud et al., 2010) for the underlying
computation, and they generally do not result in deterministic behavior
and are not safe for real-time use.

Another option is rewriting the entire network in C, either from
scratch or using an existing library such as mlpack (Curtin et al., 2018),
FANN (Nissen, 2003), or the existing TensorFlow C/C++ API. However,
this is both time consuming and potentially error-prone, and may and
require linking the resulting code against large libraries containing
millions of lines of code and binaries up to several GB. Additionally,
such libraries may be limited in the type of networks supported and
be difficult to incorporate into existing Python based machine learning
workflows. The release of TensorFlow 2.0 contained a new possibility
called ‘‘TensorFlow Lite’’, a reduced library designed to run on mobile
and IoT devices. However, TensorFlow Lite only supports a very limited
subset of the full Keras API, and still relies on subsets of external
ttps://doi.org/10.1016/j.engappai.2021.104182
eceived 1 August 2020; Received in revised form 16 December 2020; Accepted 29
vailable online 12 February 2021
952-1976/© 2021 Elsevier Ltd. All rights reserved.
January 2021

https://doi.org/10.1016/j.engappai.2021.104182
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2021.104182&domain=pdf
mailto:wconlin@princeton.edu
mailto:kerickso@pppl.gov
mailto:jabbate@princeton.edu
mailto:ekolemen@princeton.edu
https://doi.org/10.1016/j.engappai.2021.104182


R. Conlin, K. Erickson, J. Abbate et al. Engineering Applications of Artificial Intelligence 100 (2021) 104182

l
2
g
K
w

Fig. 1. Workflow of converting Keras model to C code with Keras2C.

ibraries such as Eigen or Intel’s Math Kernel Library (MKL) (Intel,
020) for many mathematical functions for which it is difficult to
uarantee deterministic behavior. Therefore, we present a new option,
eras2c, a simple library for converting Keras/TensorFlow neural net-
ork models into real-time compatible C code,1 and demonstrate its use

on the plasma control system (PCS) (Ferron et al., 1995; Hyatt et al.,
2010) on the DIII-D National Fusion Facility at General Atomics in San
Diego (Luxon, 2002).

2. Method

Keras2c is based around the ‘‘layer’’ API of Keras, which treats
each layer of a neural network as a function. This makes calculating
the forward pass through the network a simple matter of calling the
functions in the correct order with the correct inputs. The process of
converting a model using Keras2c is shown in Fig. 1. The primary
functionality can be broken into four primary components: weight and
parameter extraction, graph parsing, a small C backend, and automatic
testing.

2.1. Weight & parameter extraction

The Keras2c Python script takes in a trained Keras model and first
iterates through the layers to extract the weights and other parameters.
It contains specialized methods for each type of Keras layer that parse
2

the layer and read in the weights and relevant parameters necessary to
perform the forward pass through the network such as activation type,
convolution stride and dilation, etc. The parameters are then written to
the generated C source file. By default, the weights are written to the
file as well to be allocated on the stack using a custom Tensor datatype
described in more detail in Section 2.3.

For larger models, using the stack may be impractical. Therefore,
an option exists to write the weights to external files (currently the
default is to use comma separated ASCII files, though other formats
such as HDF5 or NetCDF could easily be accommodated with minimal
changes), which can then be read in at run time and stored on the
heap. In such a case, initialization and cleanup functions are auto-
matically generated to allocate the required memory, read in the files,
and deallocate memory at the end of computation. Similarly, in some
embedded applications it may be preferable to statically allocate all
memory at compile time to limit the amount of stack usage. The current
version of Keras2c does not support this due to potential issues when
multithreading, though it is a feature planned for future versions.

2.2. Graph parsing

In addition to sequential models, Keras also supports more complex
model architectures through its functional API. This allows for models
to have multiple inputs and outputs, internal branching and merging,
as well as reusing specific layers multiple times in the same model.
When using these features, the topology of the neural network will
not be a linear stack of layers. Instead, it will be a directed acyclic
graph (DAG) with each node as a layer and each edge as a piece of
data being passed from one layer to another. Keras2c supports all of
these more advanced network types, and it uses a version of Kahn’s
topological sorting algorithm (Kahn, 1962) to flatten the computational
graph into a linear sequence. Calling the layers in the corresponding
order ensures that the inputs to each layer will have been generated by
previous layers before they are called.

2.3. C backend

The Keras2c backend implements the core functionality required to
calculate the forward pass through each layer of the network. Each
layer type supported by Keras is implemented as a function. An example

of a fully connected (dense) layer is shown in Listing 2



R. Conlin, K. Erickson, J. Abbate et al. Engineering Applications of Artificial Intelligence 100 (2021) 104182
Table 1
Supported layer operations in Keras2c.

Core layers Dense, Activation, Flatten, Input, Reshape,
Permute, RepeatVector

Convolution layers Convolution (1D/2D/3D, with arbitrary
stride/dilation/padding), Cropping (1D/2D/3D),
UpSampling (1D/2D/3D), ZeroPadding (1D/2D/3D)

Pooling layers MaxPooling (1D/2D/3D), AveragePooling
(1D/2D/3D), GlobalMaxPooling (1D/2D/3D),
GlobalAveragePooling (1D/2D/3D)

Recurrent layers SimpleRNN, GRU, LSTM (statefull or stateless)

Embedding layers Embedding

Merge layers Add, Subtract, Multiply, Average, Maximum,
Minimum, Concatenate, Dot

Normalization layers BatchNormalization

Layer wrappers TimeDistributed, Bidirectional

Activations ReLU, tanh, sigmoid, hard sigmoid, exponential,
softplus, softmax, softsign, LeakyReLU, PReLU,
ELU, ThresholdedReLU

The fundamental data type k2c_tensor (Listing 3) treats any
multidimensional tensor as a 1D array (unraveled in row-major order),
while preserving knowledge of the tensor’s shape for correct indexing.

The full backend contains roughly 1500 lines of code and makes use
of only C standard library functions, yet it is able to reproduce nearly
every type of operation currently supported by Keras, a full list of which
is given in Table 1.

Unsupported layer types include separable and transposed convolu-
tions, locally connected layers, and recurrent layers with convolutional
kernels. The existing framework makes implementing new layers (in-
cluding the possibility of user defined custom layers) straightforward;
the main reason for not implementing these additional layers has been
lack of demand from the current user base, though they are planned
for inclusion in a future release.
3

2.4. Automated testing

As part of the conversion process, Keras2c generates a sequence
of randomized inputs to the network and calculates the output of the
original Keras/Python network. These input/output pairs are then used
to generate a test function that calls the C version of the network with
the randomized inputs, compares the output from the Keras2c network
to the original Keras/Python network, and verifies that the converted
network reproduces the correct behavior to within machine precision.

3. Usage

An example of using Keras2c from within Python to convert a
trained model is shown below in Listing 4. Here my_model is the Keras
model to be converted (or a path to a saved model on disk in HDF5
format) and ‘‘my_converted_model’’ is the name that will be
used for the generated C function and source files.

The command shown will generate three files:
my_converted_model.c containing the main neural net function,
my_converted_model.h containing the necessary declarations for
including the neural net in existing code, and
my_converted_model_test_suite.c containing sample inputs
and outputs and code to run the converted model to ensure accuracy.
Compiling and running the test suite will print the maximum error
between the original Keras model and the converted Keras2c model
over 10 randomly generated input/output pairs, along with the average
execution time. The test suite can also serve as a template for how to
declare inputs to and outputs from the model, and how to call the model
function to make predictions.

4. Benchmarks

Though the current C backend is not designed explicitly for speed,
Keras2c has been benchmarked against Python Keras/TensorFlow for
single CPU performance, and the generated code has been shown to
be significantly faster for small to medium sized models while being
competitive against other methods of implementing neural networks
in C such as FANN and TensorFlow Lite. Results for several generic
network types are shown in Fig. 2. They show that for fully connected,
1 dimensional convolutions, and recurrent (LSTM Gers et al., 1999)
networks, Keras2c is faster than the standard implementation in Python
for models up to ∼ 106 parameters. For 2D convolutions, Keras2c out-
performs the Tensorflow backend for models up to 3 × 104 parameters.
This scaling is intended only as a rough approximation, and the true
behavior will depend strongly on the number and size of each layer, as
well as the size of the inputs to the model. For all of these tests, the
model was made up of four layers of the specified type, and the size
of the kernel in each layer was varied. The dimension of the input was
kept at a fixed fraction of the kernel dimension.

We attribute the difference in performance compared to the stan-
dard TensorFlow implementation to two primary factors: the overhead
inherent in running a python process, and the level of optimization in
the standard or ‘‘Lite’’ TensorFlow backend vs. the Keras2c backend.
The reference TensorFlow implementation is a mix of a high level
Python interface and an extensive library of low level kernels primarily
written in C++ (TensorFlow, 2020). Running the reference Tensor-
Flow introduces many additional layers of abstraction and additional
error checking from the Python interpreter before execution passes to
the low level C++ kernels. This likely explains why Keras2c is able



R. Conlin, K. Erickson, J. Abbate et al. Engineering Applications of Artificial Intelligence 100 (2021) 104182

a
d
t
s
E
w
3
v

t
c
h
r
l
I
p

Fig. 2. Benchmarking results, Keras2c vs Keras/TensorFlow in Python, TensorFlow Lite,
nd FANN (note that FANN only supports fully connected networks and TensorFlow Lite
oes not yet support recurrent networks). The vertical axis shows the inference time (i.e.
ime to compute a single forward pass through the model), while the horizontal axis
hows the size of the model as measured by the total number of trainable parameters.
ach model was made up of four layers of the specified type, and the size of each layer
as varied. All tests conducted on Intel Xeon E5-2630 v3 @2.40 GHz, single threaded,
2GB RAM. Keras2c compiled with ICC v19.0.4 with -O3 optimization. TensorFlow
2.3.0.

o outperform the reference implementation for small models, as it
ompletely avoids this additional overhead. The second aspect is the
igh level of optimization in the reference TensorFlow backend. When
unning on the CPU, TensorFlow often makes use of highly optimized
inear algebra libraries such as Eigen (Guennebaud et al., 2010) and
ntel MKL (Intel, 2020) which offer platform specific tweaks to im-
rove performance. Additionally, many of the lower level operations in
4

TensorFlow are written to optimize performance for medium to large
models commonly encountered in large scale machine learning, while
similar operations in Keras2c are currently written to optimize for small
to medium sized models that have been developed for real-time applica-
tions. For example, Keras2c computes a 2D convolution using a ‘‘direct’’
method involving nested for loops. This can be quite fast as long as the
size of the input data and the kernels are not too large. On the other
hand, TensorFlow unwraps the convolution into a very large matrix–
matrix product, which can then be efficiently computed using standard
linear algebra routines. This unwrapping requires significant additional
memory (often allocated at execution time, which can be difficult
in real-time environments), and costs additional time, but for large
operations this overhead is offset by better memory access patterns and
use of highly optimized matrix–matrix product routines (Chetlur et al.,
2014).

5. Real-time applications

While not designed explicitly for speed, Keras2c was designed with
real-time applications in mind, so efforts were made to ensure the
generated code is deterministic and thread-safe, segmenting all non-
deterministic behavior such as system calls to dedicated initialization
and cleanup routines. The core of the neural net function is fully deter-
ministic. All functions are re-entrant, and all mutable data is explicitly
passed into and out of each function, allowing multiple calls to the
neural net to be safely executed in parallel on multiple threads. The one
exception is for ‘‘stateful’’ recurrent layers which require maintaining
an internal state between function calls, though modification to make
this thread-safe as well would be minimal and depend on the particular
multithreading method used.

Keras2c has been used to deploy neural networks on the plasma
control system (PCS) at the DIII-D tokamak at the National Fusion
Facility operated by General Atomics in San Diego (Luxon, 2002),
where neural networks are used to predict the evolution of the plasma
state (Abbate et al., 2021) and the onset of dangerous instabilities using
FRNN (Kates-Harbeck et al., 2019) and MLDA (Fu et al., 2020). Future
work will utilize neural networks and Keras2c to speed up calculations
required for control of the plasma divertor (Kolemen et al., 2018)
and pedestal (Laggner et al., 2020). The PCS consists of a software
framework running on a collection of dedicated GNU/Linux real-time
computers connected via an Infiniband QDR interface (Penaflor et al.,
2009). It operates on microsecond timescales to acquire data from
sensors and diagnostics, calculate monitoring and feedback algorithms
on those inputs, and output control commands to actuators on the
tokamak device. There are approximately 50 different algorithms that
run on varying periodics, and 3 of these now apply machine learning
through the Keras2c framework to both analyze and control the plasma
state.

Fig. 3 shows the performance of the Keras2c generated code on
a recent experiment on DIII-D. The network was designed to predict



R. Conlin, K. Erickson, J. Abbate et al. Engineering Applications of Artificial Intelligence 100 (2021) 104182

c
i
T
o

Fig. 3. Example timing from a neural network running on the DIII-D control system.
The time shown is for 1 forward pass through the network, and also includes the
time needed to gather and prepare input data. The network contains 30 convolutional
layers, 2 LSTM layers, and a number of merging and splitting layers, with a total of
45,485 parameters. Test performed on Intel(R) Xeon(R) CPU E5-2690 v2 @ 3.00 GHz,
compiled with ICC 2018.

the plasma state, consisting of a total of 45,485 parameters in 30
convolutional layers, 2 LSTM layers, and a wide variety of merging and
splitting layers. The timing shown is for 1 forward pass through the
network and includes the time required to acquire the needed input
data from other processes and convert the input data into the correct
format and shape.2 The mean time is 1651.6 μs, and the worst case
jitter (full range, min to max) is 23.3 μs (1.4% of the mean), with an
RMS value of ±3.75 μs. Running the inference in the Python version
of Keras/TensorFlow (not shown) is significantly slower, with a mean
time of 48 ms with worst case jitter of 12.5 ms (26% of the mean time).

6. Discussion

As discussed in Section 4, the backend code as currently imple-
mented is not optimized for execution speed, especially for large mod-
els. Convolutions are currently implemented using a direct calculation
as opposed to the ‘‘im2col + GEMM’’ approach more commonly used
in deep learning libraries (Chetlur et al., 2014). Planned future work
will include implementing this and other modifications to improve
calculation speed and better support the larger model sizes becoming
common in state of the art research. Work is also underway to allow
use of Intel’s Math Kernel Library for backend operations.

7. Conclusion

Keras2c allows for the straightforward and simple conversion of
Keras neural networks to pure C code, in a form that can be easily
deployed to real-time control systems, or anywhere that a C executable
can be run. By relying only on C standard library functions, it avoids
any complicated dependencies that can make deploying any program
a challenge. The generated code is designed to be human readable
and editable, to allow for custom modifications and extensions if nec-
essary. Despite not making use of advanced numerical libraries, it is
still competitive with the reference TensorFlow implementation for
small to medium model sizes and more importantly has been designed
from the start for low-latency deterministic behavior which has been
demonstrated in its use on the plasma control system of the DIII-D
tokamak at the National Fusion Facility in San Diego. Planned future
improvements will aim to improve on this performance for larger
models while maintaining a lean structure and limited dependencies
to ease integration into existing codebases and systems.

2 The additional time required for such data pre-processing is negligible
ompared to the computations involved in the network itself, but efforts to
solate it introduced additional latency, resulting in worse performance overall.
he time shown including pre-processing can be thought of as an upper bound
n the time for the inference alone.
5

CRediT authorship contribution statement

Rory Conlin: Conceptualization, Methodology, Software, Valida-
tion, Writing - original draft, Visualization, Investigation. Keith Erick-
son: Methodology, Software, Validation, Writing - review & editing.
Joseph Abbate: Conceptualization, Methodology, Validation, Inves-
tigation. Egemen Kolemen: Conceptualization, Supervision, Project
administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors thank Mitchell Clement, Ge Dong, and Mark D. Boyer
for their help in beta testing and bug fixing. This material is based upon
work supported by the U.S. Department of Energy, Office of Science,
Office of Fusion Energy Sciences, using the DIII-D National Fusion
Facility, a DOE Office of Science user facility, under Awards DE-FC02-
04ER54698, DE-SC0015878, DE-AR0001166, and Field Work Proposal
No. 1903

References

Abadi, M., et al., 2015. Tensorflow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org, https://www.tensorflow.org/.

Abbate, J., Conlin, R., Kolemen, E., 2021. Fully data-driven profile prediction for DIII-D.
Nucl. Fusion http://dx.doi.org/10.1088/1741-4326/abe08d.

Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad, H., 2018.
State-of-the-art in artificial neural network applications: A survey. Heliyon 4 (11),
e00938.

2020. Amazon sagemaker. https://aws.amazon.com/sagemaker/.
Bai, J., Lu, F., Zhang, K., et al., 2019. ONNX: Open neural network exchange. https:

//github.com/onnx/onnx.
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., Smith, K., 2011. Cython:

The best of both worlds. Comput. Sci. Eng. (ISSN: 1521-9615) 13 (2), 31–39.
http://dx.doi.org/10.1109/MCSE.2010.118.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shel-
hamer, E., 2014. CuDNN: Efficient primitives for deep learning. pp. 1–9, arXiv,
arXiv:1410.0759 arXiv:1410.0759.

Chollet, F., et al., 2015. Keras. https://keras.io.
Curtin, R.R., Edel, M., Lozhnikov, M., Mentekidis, Y., Ghaisas, S., Zhang, S., 2018.

Mlpack 3: a fast, flexible machine learning library. J. Open Source Softw. 3 (26),
726.

Ferron, J.R., Penaflor, B., Walker, M.L., Moller, J., Butner, D., 1995. Flexible software
architecture for tokamak discharge control systems. In: Proceedings - Symposium on
Fusion Engineering, Vol. 2. pp. 870–873. http://dx.doi.org/10.1109/fusion.1995.
534361.

Fu, Y., Eldon, D., Erickson, K., Kleijwegt, K., Lupin-jimenez, L., Boyer, M.D., Eidietis, N.,
Barbour, N., Izacard, O., Kolemen, E., 2020. Machine learning control for disruption
and tearing mode avoidance. Phys. Plasmas 27 (022501), http://dx.doi.org/10.
1063/1.5125581.

Gers, F.A., Schmidhuber, J., Cummins, F., 1999. Learning to forget: Continual prediction
with LSTM.

Guennebaud, G., Jacob, B., et al., 2010. Eigen v3. http://eigen.tuxfamily.org.
Hayen, K., 2020. Nuitka. https://nuitka.net/.
Hermann, T., 2020. Frugally deep. https://github.com/Dobiasd/frugally-deep.
Hunt, K.J., Sbarbaro, D., Żbikowski, R., Gawthrop, P.J., 1992. Neural networks for

control systems—a survey. Automatica 28 (6), 1083–1112.
Hyatt, A.W., Ferron, J.R., Humphreys, D.A., Chamberlain, F.R., Johnson, R.D., Pe-

naflor, B.G., Piglowski, D.A., Scoville, J.T., Walker, M.L., 2010. Physics operations
with the DIII-D plasma control system. IEEE Trans. Plasma Sci. 38 (3 PART 1),
434–440.

Intel, 2020. Intel math kernal library (MKL). www.software.intel.com/mkl.
Jin, L., Li, S., Yu, J., He, J., 2018. Robot manipulator control using neural networks:

A survey. Neurocomputing 285, 23–34.
Kahn, A.B., 1962. Topological sorting of large networks. Commun. ACM 5 (11),

558–562.
Kates-Harbeck, J., Svyatkovskiy, A., Tang, W., 2019. Predicting disruptive instabilities
in controlled fusion plasmas through deep learning. Nature 568 (7753), 526–531.

https://www.tensorflow.org/
http://dx.doi.org/10.1088/1741-4326/abe08d
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb3
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb3
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb3
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb3
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb3
https://aws.amazon.com/sagemaker/
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/onnx/onnx
http://dx.doi.org/10.1109/MCSE.2010.118
http://arxiv.org/abs/1410.0759
https://keras.io
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb9
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb9
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb9
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb9
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb9
http://dx.doi.org/10.1109/fusion.1995.534361
http://dx.doi.org/10.1109/fusion.1995.534361
http://dx.doi.org/10.1109/fusion.1995.534361
http://dx.doi.org/10.1063/1.5125581
http://dx.doi.org/10.1063/1.5125581
http://dx.doi.org/10.1063/1.5125581
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb12
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb12
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb12
http://eigen.tuxfamily.org
https://nuitka.net/
https://github.com/Dobiasd/frugally-deep
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb16
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb16
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb16
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb17
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb17
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb17
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb17
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb17
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb17
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb17
http://www.software.intel.com/mkl
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb19
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb19
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb19
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb20
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb20
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb20
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb21
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb21
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb21


R. Conlin, K. Erickson, J. Abbate et al. Engineering Applications of Artificial Intelligence 100 (2021) 104182
Kolemen, E., Vail, P.J., Makowski, M.A., Allen, S.L., Bray, B.D., Fenstermacher, M.E.,
Humphreys, D.A., Hyatt, A.W., Lasnier, C.J., Leonard, A.W., McLean, A.G.,
Maingi, R., Nazikian, R., Petrie, T.W., Soukhanovskii, V.A., Unterberg, E.A., 2018.
Initial development of the DIII-D snowflake divertor control. Nucl. Fusion (ISSN:
17414326) 58 (6), 066007.

Laggner, F., et al., 2020. Real-time pedestal optimization and ELM control with 3D
fields and gas flows on DIII-D. Nucl. Fusion (ISSN: 0029-5515) 60 (7), 076004.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E., 2017. A survey of deep
neural network architectures and their applications. Neurocomputing 234, 11–26.

Luxon, J.L., 2002. A design retrospective of the DIII-D tokamak. Nucl. Fusion 42 (5),
614–633.
6

Nissen, S., 2003. Implementation of a Fast Artificial Neural Network Library (fann).
tech. rep., Department of Computer Science University of Copenhagen (DIKU),
http://fann.sf.net.

2020. Oracle graphpipe. https://oracle.github.io/graphpipe/.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L., Lerer, A., 2017. Automatic differentiation in pytorch.
Penaflor, B., Ferron, J., Walker, M., Humphreys, D., Leuer, J., Piglowski, D., John-

son, R., Xiao, B., Hahn, S., Gates, D., 2009. Extending the capabilities of the DIII-D
plasma control system for worldwide fusion research collaborations. Fusion Eng.
Des. 84 (7–11), 1484–1487.

TensorFlow, 2020. Tensorflow source. https://github.com/tensorflow/tensorflow.

http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb22
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb23
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb23
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb23
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb24
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb24
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb24
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb25
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb25
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb25
http://fann.sf.net
https://oracle.github.io/graphpipe/
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb28
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb28
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb28
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb29
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb29
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb29
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb29
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb29
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb29
http://refhub.elsevier.com/S0952-1976(21)00029-4/sb29
https://github.com/tensorflow/tensorflow

	Keras2c: A library for converting Keras neural networks to real-time compatible C
	Motivation
	Method
	Weight & parameter extraction
	Graph parsing
	C backend
	Automated testing

	Usage
	Benchmarks
	Real-time applications
	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


